## Optimizing the Efficiency of the NCAR-Wyoming Supercomputing Center Facility



Ademola Olarinde Mentor: Aaron Andersen

August 2, 2013

# **Personal Information**

#### Education:

- Mechanical Engineering Grad Student Texas A&M University - Kingsville
- BSc Mechanical Engineering Obafemi Awolowo University, Ife, Nigeria

### Membership:

- ASME Student Member #100386668
- NSBE Student Member #237570

### Interest:

Soccer, Basketball, Scrabble











# **Project Goals**

- **Optimize NWSC Energy Usage**
- Investigate and Identify Inefficient Energy System(s)
- Standardize Trends as a Diagnostic Tool Consistent with "The Green Grid™" **Datacenter Metric System**







# About NCAR-Wyoming Supercomputing Center (NWSC)

- Purpose: Constructed to house high performance supercomputers for atmospheric and geoscience modeling across the nation
- Official Opening<sup>[1]</sup>: October 15, 2012
- Location: 8120 Veta Drive, Cheyenne, Wyoming
- Awards & Recognition:
  - 2013 Green Enterprise IT (GEIT) Award
    - Awarded First Place in the "Facility Design Implementation" category
  - Datacenter Dynamics North American Green Data Center Design Award
  - Ranked 17<sup>th</sup> fastest supercomputer in the world<sup>[2]</sup>
  - LEED Gold Status















# The Green Grid<sup>™</sup> Metric System

- The Green Grid<sup>™</sup> energy metric system is the industry-wide accepted metric system for measuring and comparing information technology infrastructure energy efficiencies all over the world
- Metric Systems includes:

PUE =

Performance Usage Effectiveness<sup>[3]</sup> (PUE)

Total Facility Energy

IT Equipment Energy

Energy Reuse Effectiveness<sup>[4]</sup> (ERE)

ERE = \_\_\_\_\_\_\_IT Equipment Energy

 $0 \leq \text{ERE} \leq \infty$ 

 $1.0 \leq PUE \leq \infty$ 

Other metric systems investigated are Carbon Usage Effectiveness (CUE)<sup>[5]</sup> and Water Usage Effectiveness (WUE)<sup>[6]</sup>

the green grid™



# **Energy Subcomponents**



\*Boiler is mainly operated on natural gas, all other components are powered by electricity \*\*ERE is computed from reused heat energy recovered from Yellowstone Supercomputers by Energy Recovery Heat Pumps



Computational & Information Systems Laboratory

# 2012-2013 NWSC PUE & ERE

1.3PUE<sub>L3,YC</sub> signifies, 1.80 1.3PUE<sub>L3,YC</sub> level 3 PUE 15 1.60 minutes, annual 0.9ERE<sub>L3,YC</sub> measurements 1.40 Lower ERE trends 1.20 before Feb is due to xUE Ratio 1.00 energy reuse within the data center PUE ----ERE 0.80 0.60 0.40 0.20 0.00 Aug-12 Nov-12 Dec-12 Jan-13 Sep-12 Oct-12 Feb-13 Mar-13 Apr-13 May-13 Jun-13 Jul-13 Month



NCAR

# Monthly Energy Usage

 Yellowstone consumes over 80% of Total Facility Power

& Information Systems Laboratory

nal a

computation

 Mechanical load accounts for 10% of Total Facility Power on average



\*Increasing monthly concentric circle from Aug, 2012 to July 2013



# **Mechanical Systems**

Investigated NWSC Mechanical Systems are:

- Heating Systems
- Humidification Systems
- Duplex Softener Systems
- Reverse Osmosis System
- Chilled Water System

### Others include:

& Information Systems Laboratory

nal

ndu

Cooling Towers, AHU, Fan Wall Air Handlers, Snow Melt System, Lighting System



# **Hydronic Evaporative System**

• 65<sup>0</sup>F Efficient Water Circulation Utilizes 45<sup>0</sup> bends; Oversized Piping Network; and Smaller Pumps

 Cooling Tower
 Very high efficient tower consuming less at 30°F wet-bulb temp (46% of the year)

Chiller

Back-up cooling alternative at high relative humidity conditions

 Building Automation System
 Water System; Electrical Management; Air Management





HWR – Hot Water Return CWS – Chilled Water Supply

### **Building Response to Outside Weather Conditions**



- RH distribution is fairly constant year round (i.e.  $42\% \le RH \le 45\%$ )
- Mechanical Load is at it's peak within Oct-Dec, 2012

NCAR

T..deg. by Mech.Load..kW. for TIME = Aug-12 & RH... = (42 - 45]



Mech.Load..kW.

### **External Influence on Building Load During Winter**

- Mech Load is highest at high RH and low T
- December and January plot reflects Energy Recovery Pumps inefficiency during winter







## **Building Response to Yellowstone Load**



NCAR

### Building Response at Peak Computing Performance

### Chart shows building response at 91% Yellowstone

- 4096 node cases (of 4518 nodes) was loaded on
   Yellowstone on June 18,
   2013 at 17:23:53 (inset on chart in blue ring)
- Building response not modulating as much as Yellowstone load





& Information Systems Laboratory

bual

nputati



## **Heating Systems**

- NWSC operates Energy Recovery System (ERE)
- ERS involves the reuse of heat removed from cooling supercomputers elsewhere within the data center

| Energy Recovery System | Heat Recovery Pumps (HRP)                                                                                | Boiler System                                                                                                                                                                                        |
|------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Running Condition      | <ul> <li>Enabled when AHU is energized</li> <li>Temp Set-Point:</li> <li>- 140°F at OAT*≤60°F</li> </ul> | <ul> <li>Back-up to HRP when HW supply temp is not maintained within 5°F of temp set-point for longer than 5mins</li> <li>When HPHW flow rate is greater than max allowable for all HRP's</li> </ul> |
| Rating                 | 180 HP water-to-water scroll heat pump/chiller (3 units)                                                 | Benchmark 2.0 Low NOx Gas Fired<br>Boiler System (4 units)                                                                                                                                           |
| Power Supply           | Electricity                                                                                              | Natural Gas                                                                                                                                                                                          |



& Information Systems Laboratory

nal

nputati

# **Heating Load Performance**

- Both systems provided adequate heat requirements
- computational & Information Systems Laboratory Boiler modulates efficiently with heating demands and gas consumption







## **Cost Analysis**

\$5,958.02 saved in the last 4 months

Computational & Information Systems Laboratory Current unit cost of natural gas makes Boiler System more economical





## **Carbon Emission**



- Facility has shown consistent improvement to 0.14CUE since commissioning
- Running Boiler System reduced total carbon emissions



# Water Usage Effectiveness (WUE)

- 0.10WUE
- Annual Water Usage = 1.1 million liters (Aug, 2012 June, 2013)



# Why is RHP inefficient?

- Yellowstone HW heat rejection is relatively too low for equivalent heating requirements
- RHP operates with 1.1 MW USH systems against 4MW design

onal & Information Systems Laboratory

omputati

4MW USH
 Simulation predicts
 RHP's adequacy in
 the NWSC heating
 requirements during
 Summer





Utility Substation HPC – USH High Performance Computing – HPC Recovery Heat Pump – RHP Hot Water - HW

# Conclusion

- NWSC has shown steady improvements to 1.3PUE<sub>L3.YC</sub> and 0.9ERE<sub>L3.YC</sub> over the first year of operation
- Building responds more to outside weather conditions than Yellowstone load
- Running RHP proves competitive advantage during summer season (adequate, if preference is given to green technology over cost)
- Improving RHP pump sequencing is recommended
  - Boiler is a preferred alternative at other seasons both economically, environmentally and with respect to energy usage
  - Trend proves to be an efficient diagnostic tool



## **Future Work**

- Software development can be designed to plot trends on a weekly basis, providing an analytical tool for routine maintenance and oversight of facility for Engineers
- UPS Firmware Software Upgrade Power Delivery Effect



## Reference

[1] NCAR – Wyoming Supercomputing Center (NWSC) Fact Sheet. April 2013 http://www2.ucar.edu/atmosnews/news/nwsc-fact-sheet

[2] June 17, 2013 TOP500 Press Release at the opening session of the 2013 International Supercomputing Conference in Liepzig, Germany http://top500.org/blog/lists/2013/06/press-release

[3] the green grid<sup>™</sup> "PUE<sup>™</sup>: A COMPREHENSIVE EXAMINATION OF THE METRIC" WHITE PAPER #49. 2012

[4] the green grid<sup>™</sup> "ERE: A METRIC FOR MEASURING THE BENEFIT OF REUSE ENERGY FROM A DATA CENTER" WHITE PAPER #29. 2010

[5] the green grid<sup>™</sup> "CARBON USAGE EFFECTIVENESS (CUE): A GREEN GRID DATA CENTER SUSTAINABILITY METRIC" WHITE PAPER #32. 2010

[6] the green grid<sup>™</sup> "WATER USAGE EFFECTIVENESS (WUETM): A GREEN GRID DATA CENTER SUSTAINABILITY METRIC" WHITE PAPER #35, 2011



# Acknowledgment

- Aaron Andersen
- Stacey Andersen
- Makaila Andersen
- Bruce Andersen
- Joan Fisher
- Emerson Fisher
- Gary New
- Mark Bradford
- Jenny Brennan
- Christopher Kruse
- Sangsoo Lee
- Kristin Mooney
- Annie Wood
- RMH Group
- Cheyenne LEADS



onal & Information Systems Laboratory

computation

